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NOMENCLATURE 
■ 

The terminology Is In general agreement with Reference $.    Unless 
otherwise noted, all of the following quantities are nondlmenslonallzed In 
terms of one-half the fluid density and appropriate powers of the velocity 
of the origin and the body length. Following this table Is a short summary 
of derivations for representative dimenslonless forms. The numbers In 
brackets refer to applicable formulas In the text. 

A, A*   Cross-sectional area of wake at stern 

A      Effective area of body as an airfoil 

At      Effective area of tall surface 

a      Geometric aspect ratio of tall fin, Including Intersected 
portion of body 

a0 Effective aspect ratio of body alone 

at Effective aspect ratio of tail fin [22] 

b Actual semi-span of tail fin 

b Distance of tip of tail fin from body 

bt Effective semi-span of tall fin [21] 

c Radius of gyration about y axis through center of gravity 

CDt Drag coefficient of tall fin, based on plan-form area of tail 

Cjn Lift coefficient of body alone, based on effective area of body 

0*+ Lift coefficient of tail fin, based on plan-form area of tail 

C      Surface area coefficient of body alone, based on circumferential 
area of circumscribing cylinder 

Cfc Drag coefficient of body alone, based on surface area of body 

D Drag force 

d Diameter of body 

P Tall lift factor [12] 

0 Downwash factor for rectilinear motion,   [13] 

H Boundary-layer shape parameter,  [68] 

K Downwash factor for rotary motion,  [14] 

1 Moment of Inertia about y axis through center of gravity 

k Longitudinal virtual-mass coefficient 



k Transverse vlrtual-niass coefficient 
2 

k' Virtual nio.T.ent of inertia relative to y axis 

L Lift force, normal to direction of motion 

1^ Static lift derivative 

I Length of body (dimensional) 

M Moment about y axis through center of gravity 

m Mass of displaced fluid 

M Rotary-moment derivative, derivative of moment with respect to 
1 angular velocity 

M Rotary-moment derivative for hull alone 

M t Rotary-moment derivative for tall fin 

M- Derivative of moment with respect to angular acceleration 

VL Stable-moment derivative, derivative of moment with respect to 
veloclcy In z direction 

M^ Static-moment derivative for hull alone 

M^ Derivative of moment with respect to acceleration In z direction 

q Angular velocity about center of gravity 

R Radius of hull at fin 

V: Nose-radius coefficient o 
r Tall-radius coefficient 

U Velocity of center of gravity relative to fluid (dimensional) 

w Velocity in z direction, normal velocity 

x Absolute vaxue of axial distance of center of buoyancy from bow 

x Absolute value of distance of point of application of lift force 
from center of gravity 

x. Absolute value of distance of center of gravity from stern 
s 

xt Absolute value of distance from aerodynamic center of fin to 
center of gravity 

Z Normal force, positive downwards 

2„ Rotary normal-force derivative 

Z Rotary normal-force derivative for hull alone 

Z- Derivative of normal force with respect to angular acceleration 

', ijjKP.'mfji.. AH1 it 



Zw Static normal-force derivative, derivative of force with respect 
to velocity In z direction 

Zwo Static normal-force derivative for hull alone 

Zwt Static normal derivative for tall fin 

Z- Derivative of normal force with respect to acceleration In 
z direction 

o Angle of attack In radians 

ß Effective angle of attack on the tall fins 

y Ratio of downwash angle at fin to downwash angle at center of 
body lift 

4 A factor,  1^6] 

42 A factor,   [50] 

6* Displacement thickness of boundary layer at tall,  [65] 

c Angle of downwash. In radians 

t Ratio of lift coefficient according to Welnlg's theory to lift 
coefficient according to llftlng-llne theory 

t Wake factor, correcting for velocity retardation over tall fin 
due to effect of hull boundary layer, -{73] 

6 Momentum thickness of boundary layer at tall,   [66] ' 

X Length-diameter ratio of body 

ft An error factor,  [48] 

fm Axial distance of maximum section, body lengths from bow 

p Mass density of fluid (dimensional) 

o Directional-stability Index, a root of the characteristic equation 
of the linearized equations of motion 

REPRESENTATIVE NONDIMENSIONAL FORMS 

A# m displacement area of wake 
I2 

M _ moment 

^U2!3 

M .    a (moment)     _J  
q  d(angular velocity) Ip^u 



v   .   g(mc.T!ent) i 

2 5Pv*l* 
or small a 

M. . d( moment) 
diacce^er&zion in 2-dlrec:i 

m   .J(volume; 
/3 

557    p 

q   • (angular velocity) [^j 

,       (nose radius)/ 
0     (diameter of hull)8 

2   , normal force 

2   m     ^(normal force) 1 
q     ö(angular velocity)   l^^u 

-    u dincrzzl force) 
da 
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ABSTRACT 

Various methods of estimating the forces and moments on an elongated body of 

revolution at a small angle of attack In uniform motion or with a small angular velocity 

In rotary motion are considered.   After a review and critique of the literature, a new 

method for estimating the stability derivatives Is proposed, the principal novel feature 

being the Incorporation of a downwash correction due to lift on the hull in determining 

the lift on a tail surface. 

The values of the stability derivatives given by the various sets of formulas 

considered are compared with the results of measurement, both with a 3-component 

dynamometer and with an oscillator, on two bodies of revolution, with and without 

tall surfaces. 

Two applications of the formulas for the stability derivatives are made.   In 

one they are used to determine the size of tail surfaces necessary in order to obtain 

a prescribed value of the stability index; in the other they are applied to derive simple 

expressions and curves for the errors in the stability index due to percentage errors 

In the stability derivatives. 

INTRODUCTION 

In the era from about 1920 to 1935. the development of the airship 

stimulated considerable research In the aerodynamics of elongated bodies. In 

the main the results of this work have been thoroughly reviewed by Munk,1 

and Arnstein and Klemperer.2 Unfortunately, as'a consequence of the airship 

disasters of the 1930's, airship construction ceased and this stimulus for 

research was lost. 

During the past war the design of numerous weapons and devices 

taxed the existing theory of the forces and moments on elongated bodies of 

revolution and clearly indicated the necessity for additional work in this 

field. The new ideas and procedures developed by the Germans in connection 

with their investigations of the stability and motions of submarines and tor- 

pedoes have been reported principally by Albrlng.3»4»5 In this country a 

procedure for estimating the hydrodynamic characteristics of a body of revo- 

lution, equipped with tall fins, when its bare hull characteristics are known 

or assumed, was developed on the basis of Freeman's AKRDN data* by one of the 

present authors and employed In the design cf underwater bodies. The presen- 

tation of a refined version of this procedure is one of the purposes of this 

1IUf«rtasti are listed on page 35. 



report. 
In the postwar period experimental data on the hydrodynaralc charac- 

teristics o£ elongated bodies of revolution have been accumulated at 'the 
Experimental Towing Tank of the Stevens Institute of Technology and at the 
Taylor Model Basin; concurrently the work of Munk1  on the tnvlscld flow about 
such bodies has been extended by Laitone.7    Also, within the last decade, 
significant advances have been made in boundary-layer theory, especially on 
the growth of the boundary layer along a body In the presence of a pressure 
gradient.    These are reviewed in a recent report by Granvllle.8 

On the whole, however,  it appears that the principal aim of this 
research—to find a theory for the flow about an elongated body moving through 
a viscous fluid which is In accord with the observed flow and which predicts 
forces and moments in agreement with experlraent—is far from attained. 
Nevertheless, several important principles have been established on the basis 
of which it appears possible to make rational estimates of these forces and 
moments. 

It is proposed in tfhe present report to review some of these prin- 
ciples and procedures, to derive ihe aforementioned new procedure, and con- 
versely eo show how it may be applied to determine the size of appendages 
necessary to obtain a desired value for the dynamic-stability index.    As an 
interesting applica-lon of one of the simpler sets of prediction formulas, 
an appendix on the sensitivity of the value of the stability-index to errors 
in the values of the stability derivatives Is also included. 

THE FRAME OP REFERENCE 

The longitudinal, transverse and normal axes x,  y, and 2, respec- 
tively, are assumed to rotate with the body, with the origin of the coordi- 
nate axes at the center of gravity.    Positive directions are x forward, y to 
starboard and z downward, perpendicular to x and y.    The respective forces 
X, Y, and Z and velocities u, v, and w are directed accordingly.    For the 
purpose of this analysis motion will be assumed confined to the xz plane, 
w'lwh angle of attack a, angular velocity q and moment M about the y axis 
assumed positive if directing the positive z axis to rotate Into the direc- 
tion of the positive x axis. 

The foregoing conventions are in accordance with the nomenclature 
of SNAME Bulletin 1-5,* which will also be employed in -the following. 



THE CHARACTERISTIC EQUATION; THE STABILITY DERIVATIVES 

Neglecting metacentrlc stability and surface effects, the charac- 

teristic equation of the linearized differential equations of motion in the . 

vertical plane, in dimensionless form, may tt written as10 

[(Zw-m)(M.-I) - M^]*2 + [ZW(M.-I) + Kq(Z^-m) - Z-f^ - ^(ra+Zq)]^ 

+ [ZwMq - ^(nH-Z^] - 0 [1] 

In this equation the primes usually employed to distinguish between dimen- 

sional and nondimensional quantities* have been omitted, since all quantities 
are dimensionless.    In [1], m is the mass of the body,  I Its moment of iner- 
tia about the y-axis through the center of gravity; the dot over a variable 

denotes the time derivative of the variable, and a variable appearing as a 
subscript to Z or M denotes partial differentiation with respect to that sub- 

script.    Quantities are nondimensionalized by dividing by appropriate powers 
of the basic quantities  /,  U, and -KP, where I Is the length of the body, U 

is its speed of advance, and /> is the mass density of the fluid. 

The characteristic equation Is a quadratic from which the stability 

indices o may be determined when the other quantities are known.    It will be 

shown that it may also be used to estimate the size of the stabilizing sur- 
faces when a desired value of a stability index Is prescribed. 

When numerical values are considered, many of the terms in [1] are 
found to be small in coraparlsor, with others.    It is customary to assume 

approximate simplifying values for these small terms.    For a nearly neutrally- 

buoyant body these assumptions are the following: 

Z^ - - kam.      li • 0,      \ - 0,     M^ - - k'l [2] 

where k   and k1 are coefficients of additional later-?! mass and of moment of 
a . 

inertia about a transverse axis.     The determination of the remaining sta- 

bility derivatives, Z , VL, Z , M .  is the objective of various experimental 
techniques and theoretical analyses.    Some of the methods for estimating 

these derivatives will now be discussed. 

REVIEW OP THEORY FOR STABILITY DERIVATIVES FOR A BODY 
OF REVOLUTION WITHOUT APPENDAGES 

LAMB'S ANALYSIS 

It is instructive first to examine the values of these derivatives 
obtained from potential-flow theory.    From Chapter VI of Lamb's Hydrodynamics" 

the following values may be derived 



(a) zw-o 

(b) 
**' *, - \)m 

(c) Zn - k o 
q      i 

td) Mq-0 

(3] 

where k   Is the coefficient of additional axial mass.1 

The first of Equations [3] Is known to be In serious error.    Con- 
cerning this Arnsteln and Klemperer2 remark:     "When an airship Is propelled 
at an angle of attack, lift forces are created In a similar manner as by the 
wing of an airplane.    It Is true that the airship's shape as a wing Is very 
poor and Its aspect ratio extremely small; but the size of the exposed sur- 
faces is so great that tremendous aerodynamic force components at right 
angles to the flight path can be evoked."   This discrepancy is attributable 
to viscous effects which contribute—to the forces and moments acting on the 
body—not only the integrated effects of the shearing stresses, but also,  by 
the formation of a boundary layer along the body and a wake, greatly modify 
the pressure distribution,  especially toward the after part of the body. 
This discrepancy between the potential-flow pressure distributions and the 
measured values on a model of the USS AKRON is graphically shown by Allen.1* 

The values for t«    in [3j  (known as Munk's formula}', are generally 
about 13 percent higher than the measured values.    This discrepancy is also 
attributable to the viscosity of the fluid which, by diminishing the downward 
force acting near the stern,  decreases the moment and gives a resultant 
upward force. 

The value for Z    In [3] corresponds to an outward  (centrifugal) 
force exerted by the fluid on a body in rotary motion.    This force is due to 
the uniform rate of change of direction of the longitudinal momentum imparted 
to the fluid by a body moving In a circular path.    Since it is known that 
virtual-mass effects are only slightly influenced by viscosity,  it is reason- 
able to assume that the term k m will contribute to the value of 2„ in addl- 
tion to any effects of viscosity. 

The little available data for M. indicates that the last of Equa- 
q 

tlons 13] is very nearly correct for a viscous fluid also.    The contribution 
of viscosity to this and the other derivatives will be-discussed more fully 
in a subsequent section. 



LAITONE'S ANALYSIS 

An Interesting modification of the potential-flow theory, in which 

it was attempted to take into account the effect of viscosity, by assuming 

that the body effectively had an area of section at the stern equal to the 

width of its wake, has been carried through by Laitone.7 On the assumption 

that the center of gravity and buoyancy coincide, his results may be expressed 

as follows: 

(a) 2w * - H' 

(b) ^ - m + xsZw, 

(c) vv + w 
(d) Mq " xs2Zw 

m 

where A is the area of section of the wake at the stern, nondimensionalized 

in terms of the body length, and xs  is the distance of the center of gravity 
from the stern similarly nondimensionalized. Since the diameter of the wake 

is unknown, [U]  does not give an estimate for Z , but valid expressions for 

the other derivatives in terms of Zw would be most useful. 

Laitone's formulas are based on a section-element theory which 

assumes that at each section the fluid has the lateral momentum corresponding 

to the two-dimensional virtual mass of the section. No account is taken of 

the lift and downwash effects of the vortex system which Harrington,13 

Ehgelhardt,14 and Albrlng3 have shown to exist in the flow field of a yawed 

body. Results from the formulas are compared with experiment in a subsequent 

section. 

ALBRING'S ANALYSIS 

In References 3 and 4 Albrlng has derived formulas for the stability 

derivatives on the basis of the assumption that th*» lift force may be consi- 

dered to act at the same point near the stem on the axis of the body for 

both straight and rotary motion, whether or not the body is equipped with 

fins. Furthermore, he assumes, in Reference 3, that the lift force on the 

body in rotary motion is equal to that fqr motion in a straight line at an 

angle of attack equal to the local angle of attack in rotary motion at the 

point of application of the lift force. In Reference ^ the latter assumption 

is modified by reducing the force thus obtained by a constant amount so as 

to obtain zero force on a hull due to rotary motion. 



or 

Albrlng's results, applied to a hull without fins, are as follows: 

(a) 1^ assumed or measured, 

(b) Mw- (k^Jm-x^, 

(ci ) zq - - x0L^ {from Reference 3), [J] 

(c  ) Z   ■ 0 (according to Reference U), 

where L Is the nondlmenslonalized force normal to the direction of incident 
flow and x   Is the nondlmenslonalized distance of the assumed point of appli- 
cation of the lift force from the center of gravity.    Z    is related to L   by 
the equation 

Zw - - (^ + D) [6] 

where D Is the nondiraenslcnallzed drag of the body. It is.implied by Albrlng 

that x is approximately half the prlsmaclc coefficient of the body. 

Since Reference 1 was written after 3, it must be presumed that 

Albrlng preferred the value cf Z in [5c ] derived from Reference k.    The 
values of the derivatives given by the various formulas will be compared 

with experiment in a subsequent section. 

RSVIiW. 0? THEORY C? STASILITY DERIVATIVES FOR A 
BODY OP REVOLUTION WITH TAIL SURFACES 

POTENTIAL FLOW FORMULAS 

In estimating the forces and moments on an elongated body of revo- 

lution equipped with tail surfaces it has been customary to assume that there 

is no interference between the body and these surfaces, so that their separate 

effects are additive. Let Zwt be the contribution of the tall surfaces to 

Z.. and let x«. be the distance (nondlmenslonalized) between the center of 
W 6 

gravity and the center of pressure on the tail. Then, the addition of the 

tail-surface effects to the values for the body alone gives 

'*> Zw " Zwo + Zwt 

(b) ^-^♦XtVt 

(c) Z • Z  + x«.Z t q  qo  t wt 

(d) M- Mnrt + x *Z_ q   qo   t wt 

[7] 



Here Zwt Is to be estimated from the airfoil theory of low-aspect-ratio air- 

foils, and the zero subscript denotes values (such as Equations [U] and [5]) 

for the body of revolution without tall surfaces. 

The terras xtZw and xt
aZw In Equations [7c] and [7d] are obtained by 

the well-known procedure of computing the force on a tall surface, when the 

(nondlmensionallzed) angular velocity of the body is q, from the mean lateral 

velocity of the surface, w ■ qxt.. This gives Zwtxtq and Z txt
2q for the 

(nondlmensionallzed) force on the surface and the moment of this force about 

the center of gravity. The derivative of this force and moment with respect 

to q then gives the terms in Equations [7c] and [7d]. 

Worthy of special note are the extremely simple approximations 

obtained for an elongated body by setting k ■ 0, k - 1, and xt » i- in [3] 

and substituting into [7]: 

<a> Zw-Zwt 

(b) ^-■♦K 

(O Zq-izw 

(d) Mq-Jzw  . 

[8] 

ALBRING'S ANALYSIS 

As was stated in the discussion of the body without fins, Albring 

assumed that the point of application of the lift force was unaltered by the 

addition of fins. Here also there are two formulas for Z , one obtained from 

Reference 3, and a "corrected" one obtained from Reference k.    His results 
for a hull with fins may be expressed as follows: 

(a) 1^ assumed or measured. 

[9] 
or 

(b) ** ' vs )■ - «oV 
(c,) Z   ■ - Xgl^  (from Reference 3), 

(c2) Z   - - Xjjd^ - I^Q) (from Reference U) 

(d) Mq *  - xo% 

Here L  denotes the lift rate for the bare hull as distinguished from 1^, 

ehe lift rate for the hull with fins, x is the nondlmensionallzed distance 

of the assumed point of application of the lift force from the center of 

gravity, implied by Albring to be half the prismatic coefficient of the body. 
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Equation [6], Zw - - (I^+D), is still applicable, although the terms now 

refer to the body with fins. 

Results from Equations [9] will be compared with .experiment In a 

subsequent section. 

DERIVATION OP NEW FORMULAS FOR STABILITY DERIVATIVES 

Several lnvestlgatorss',3»M have observed that at moderate angles 

of attack there is a vortex system in the wake of an elongated body of revo- 

lution analogous to that of an airfoil of low aspect ratio. For the purpose 

of developing an approximate theory it will be assumed that, for small angles 

also, a part of the lift developed by the body is attributable to its action 

as a symmetrical airfoil of low aspect ratio. 

At small angles of attack a, the lift of a body of revolution is 

expressible in the form L - C a + C a*. It is well known that a very long 

cylinder at an angle of attack is subject to a normal force proportional to 

sin*a, (Reference 15), an effecc which may be explained by assuming that the 

longitudinal and normal components of ehe Incident flow act independently. 

It appears reasonable to suppose that this effect accounts for the quadratic 

term at small angles of attack. However, since in the present work we are 

concerned only with the estimation cf the stability derivatives, to which 

th« quadratic term makes no contribution, we will not consider this term any 

further. 

The original assumption can now be seated more precisely, that, at 

small angles, that part of the lift which varies linearly with the angle of 

attack may be treated by the methods of airfoil theory. 

According to the theory of the lifting line," as modified by 

Weinig's cascade theory,17 at each point downstream from the hull center of 

lift there is a downwash angle c, a function of position, determined by the 

lift coefficient and the effective aspect ratio of the hull. Thus the resul- 

tant angle of attack at a point is 

ß * a - € [10] 

The analytical determination of the load distribution and lift on 

a tail surface is now seen to be a very difficult problem. Not only is the 

tail immersed in a thick boundary layer and subject to-its velocity gradients, 

but also the proximity of the tall to the hull center of lift,13t11 implies 

variations of the downwash angle along the chord and span of the tail surface. 

Nevertheless, an approximate analysis will be carried through by assuming 

mean values of the downwash angle and flow velocity over the tall surfaces. 



. 

1 

The following approximate formulas will be derived; 

U) 2W.ZW0 -FAtG 

^ «w- Mwo "W 
{c) V V " FAtK 

[H] 

(d) Mn - nnn  - x.PA.K q   qo   t t 

Here !*, G, and K denote the expressions 

P ^t- [12] 
1 ♦ 2/at 

G- 1 -iyx2 ^ (13] 

K K x, - °^yx2m [14] 

where At is the effective area of tht tall surfaces, 
xt Is the distance (nondlmenslonali'.ed) between the center of gravity 

and the center of pressure or. the tall, 
t    Is Welnlg's correction factor, referr^ to as f In Reference 21, 1 for small aspect ratio 
t Is the wake factor, correcting for the dIfK-'ence between the mean 
2 dynamic pressure at the tall surface and ""he dynamic pressure 

In free stream, 
y Is the ratio of the mean downwash angle at the tall 'o the downwash 

angle at the center of body lift, 
k   Is the length-diameter ratio for the body, and 
at Is the effective aspect ratio of tall fin. 

The bare-hull derivatives Zw0, Hvo, Z , M can either be taken from exper'- 
ment or from Laltone's or Albrlng's formulas, [4] and [51. This will be dis- 
cussed In the following sections in which the Equations [11] are derived. 

EFFECTIVE ANGLE OF ATTACK AT THE TAIL 

Welnlg's theory17 shows that for small angles of attack the down- 
wash angle for a surface of small aspect ratio also approaches the value given 
by lifting-line theory 

where C^  is the lift coefficient for the lift on the body based on its 
effective area as an airfoil, 



10 

a0 is the effective aspect ratio of the body, and 

y Is the ratio of the mean angle of downwash at the tail to the  angle 
at the center of lift. 

If A0 Is the effective area of the body as an airfoil nondlmenslonalized in 

terms of the body length, we have Cj^ ■ I^Q^/^Q-    Furthermore, by definition, 
ao ' ,/*o*,t* Substituting these values into (15] gives 

Hence, from [10] and [16] we obtain 

ß'aG [17] 

wnere 

G- i -£rx%0 [18] 

The ratio y at first Increases with distance downstream from a value 

Of unity at the center of lift, reaches a maximum, and then decreases asymp- 

totically. Ixperlmental and theoretical investigations are needed to define 

the variation of y with body form and position relative to the body. 

FORCE 01 A TAIL SURFACE 

According to llfting-llne theory, assuming elliptic load distribu- 

tion, the lift coefficient for an isolated wing surface of aspect ratio a at 

an angle of attack ß  Is 

L     1 + 2/a 

For small aspect ratios, this equation leads to results which are 

considerably in error. The application of Weinig's17 correction factor f , 

herein referred to as f , to Equation [19] gives improved agreement with 

experiment.11 Fora ■ 0, Weinig's formula becomes 

t   m  0 ♦ a/2) tanh (2/a) , ^20j 
1    1 + tanh (2/a) 

A graph of t   against aspect ratio is given in Figure 1. 
If such a wing is attached to a hull, however, measurements show 

that the loading is somewhat reduced near the hull but that additional lift 

is Induced on the portions of the hull adjoining the wing. Furthermore, 

üj»cause at least part of the surface will be within the boundary layer of 

the hull, there will occur a nonuniform reduction in the velocity over the 

surface. 

■ 
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Figure 1 - Limit off (Ratio of Lift Coefficient According 
to Welnlg Theory to Lift Coefficient According to Lifting 

Line Theory) as Angle of Attack Approaches Zero, 
Plotted as a Function of Aspect Ratio 

It will be assumed that the effect of the boundary-layer flow over 

the tall surface can be expressed by the application of another correction 

factor C to [19]> to account for a mean reduction In Incident flow. The 

deviation from elliptic load distribution, due both to the transverse velocity 

gradients in the boundary layer and to the image effects in the hull, may 

also modify Equation [19]. but it is not considered worthwhile to attempt to 

correct for this effect in the present approximate theory. 

The additional lift on a hull adjacent to a lifting surface is dis- 

cussed by Wieselsberger.2* His results have been applied by Fehlner21 to 

obtain approximate formulas for the effective span and effective aspect ratio 

of an Isolated wing having the same lift and induced drag as the combinatior 

of intersecting wing and hull. The formulas are 

K _ wA  R2 K' -*) [21] 

'at- (a+2)[l --£] -2 [22] 
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where b and bt are the actual (wing tip to body axis) and effective semi-spans, 

R Is the hull radius, which Multhopp28 recommended be taken 
at the 3/U chord point when the radius varies along the 
root of the wing, and 

a and at are the actual (including Intersected area of body) and effec- 
tive aspect ratios. 

The effective area of the wing is then given by At ■ Ub^/a*.. 

With the aforementioned corrections, [19] becomes 

'Lv 

where 

CT±'?ß [23] 

[24] 
2fff t 

1 + 2/at 

Let CDt be the drag coefficient of the tail surface, based on its 

projected area. Then, for small angles, the (nondimenslonallzed) normal com- 

ponent of the force on the tall may be written as 

2.- - A.(CLt+^CDt.) - - AJJ(? + CDt) [25] 

from [25]. In general, C** is negligible In comcarlson with P. Hence, sub- 

stltutlng for ß  from [17] and differentiating [2$] with respect to a gives 

[26] Zwt " * PAtG 

since, by symmetry, 

45 - * • 0 da  do 

when a ■ 0. 

THS STATIC NORMAL-FORCE DERIVATIVE, Zw 

The superposition of the hull and tail-surface contributions to Zw 

immediately gives Equation [Ha]. 

It should be noted that a theoretical method of estimating Z  is 

not yet available. Laitone's formula, [*»], Zw0 « - 2A, only expresses Zyo 

in terras of another unknown. Hence, it is recommended that Johnson's empiri- 

cal formula,11 based on tests of a large series of bodies, be used: 

Zwo ' " (0-23l+ ra''7,+ D) [27] 
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THE STATIC-MOMENT DERIVATIVE, V^ 

The moment about taa center of gravity of the force on the tall 

surface Is Mt • xtZtl and hence, from [26] 

Mwt - xtPAtO [28] 

For the complete assembly, then 

\'\o- xtFAtG 

In accordance with Equation [11b]. 
Here M^ may be estimated from Laltone's Equation [Ub] or from 

Johnson's empirical formula1' 

Mwo - 0.87 (kf - k )m [29] 

THE ROTARY NORMAL-FORCE DERIVATIVE, Z 

Consider a body of revolution, without tall surfaces, moving In a 

circular path at a steady nondiraenslonal angular velocity, q, with zero angle 

of attack at the center of gravity. It was seen, In the discussion following 

Equation [3], that the Inertia of the fluid contributes a term k m to the 

value of Z . Also, by the analogy between a straight body In curved flow 

and a curved model In straight flow, It might be expected that the body would 

experience a lift force, like a cambered airfoil at zero angle of attack. 

In the following section, after a consideration of Gourjlenko's measurements 

on a curved model of an airship hull23 and rotating arm measurements at the 

Stevens Institute of Technology on a torpedo model without fins,24 the mean 

value -0.10 m Is taken as the contribution due to this effect. Thus the 

rotary derivative for the bare hull will be taken as 

Zqo - - (0.10 - kjm [30] 

It will be supposed that the part of this force additional to the Inertia 

effect Is of the same nature as that acting on a straight body at an angle of 

attack In uniform flow and hence, the effects of the resulting downwash will 

be Included In the calculation of the tall-surface force due to rotation. 

The contribution of the tall surfaces to Z„ will now be considered. 
q 

The angular velocity q Imparts a mean normal velocity w ■ qxt to the surface; 
or,  since all quantities are nondiraenslonalized,  the angle of attack on the 
tall surface due to the angular velocity Is a ■ qx^.    Also, corresponding to 
the normal force 0.10 mq, there Is a downwash angle at the tall surface. 
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analogous to 1,16], 

...      « --OJO-y^mq [y] 

Hence, the effective angle of attack on the tail surface Is   . 

^•qK 132] 

where 

K-xt-^-yXara [53] 

Then, from [25], again neglecting the drag of the tall surface, 

Zt - /JFAt - - qFAtK 

and hence. 

since,  by syranietry. 

Z  - - FAtK U«) 

when a ■ C. 
The resultant value for the body wUh tall surfaces Is now seen to 

be In accordance with [lltjf 

THE ROTARY-MOMENT DERIVATIVE, M 

The moment about the canter of gravity of the force on the tall 

surface Is M,. ■ x.Z,, and hence, from [Jfcl, 

Mqt " ■ xtPAtK ^5] 

For the complete assembly, then 

K  ■ K*  - x.FA.K q   qo   t t 

In accordance with [lid]. 

COMPARISON WITH EXPERIMENT 

In order to evaluate the procedures Indicated In the preceding text, 
two bodies of revolution of TMB Series $8 were subjected to further tests to 
determine the dynamic stability characteristics.    This section describes 
these tests and compares the values thus obtained with values predicted by 

"the various formulas. 
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DESCRIPTION OP MODELS,  APPARATUS,  AND TEST PROCEDURE 

Series 58 Models 4164 and 4l66 (References l8,  25 and 26) are 9- 
foot models of laminated mahogany.    They were cut off a short distance forward 
of the stern and a reinforced white-metal tall-cone—stabilizer assembly was 
substituted.    These models are shown In Figure 2.    They were fitted so that 
they could be mounted at the center of buoyancy for static-force and moment 
measurements or at points 6 3/16 In. ahead or 7 3/l6 In. aft of the center of 
buoyancy for testing on the underwater-body oscillator.    Geometrical charac- 
teristics of the models are summarized In the following table. 

TABLE 1 

Characteristics of Models 4l64 and 4l66 

Model X fm CP 
ro r, 

X m Cs At at xt 
4164 

4166 

7 

7 

0.40 

0.40 

0.55 

0.70 

0.50 

0.50 

0.10 

0.10 

0.430 

0.478 

.0176 

.0224 

.695 

.810 

.00414 

.00602 

4.93 

3.39 

.564 

.513 

In Table 1 X Is the length-diameter ratio of the body, 
{    Is the axial -distance of the maximum section.  In body lengths from 

bow, 
C    Is the prismatic coefficient, 
rÄ is the nose-radius coefficient,28 

r   is the tall-radius coefficient,26 

x   is the axial distance of the center of buoyancy,  in body lengths 
from bow, 

m   Is the nondlmenslonal mass of the displaced fluid, 
C    Is the surface-area coefficient, defined as the ratio of the surface 

area of the body to circumferential area of a circumscribing 
cylinder of the same length, 

At Is the effective plan-form area of the tall fin, nondlmenslonalIzed 
In terras of the body length, 

at Is the effective aspect ratio of the tail fin, and 
xt is the distance (nondimenslonallzed) between the center of gravity 

and the center of pressure on the tall. 

The static-stability determinations18  were made by means of a 
hydraulically operated three-component dynamometer, shown schematically In 
Figure 3, at speeds ranging from 3 to 12 knots for angle-of-attack settings 
of O«, ±T,±2«, ±3", and±4». 

Rotary derivatives were determined by analysis of forced oscilla- 
tions using the underwater-body oscillator1'  shown in Figure 4.   This 
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Instrument produces torslonal vibrations about a vertical axis.   It consists 
of a driving or forcing mechanism,  spring-coupled to a driven or following 
mechanism by means of a torsion bar, and a displacement-indicating system. 
Sinusoidal displacement is introduced at the head of the oscillator by means 
of a scotch yoke of variable stroke.   A rheostat on the driving motor permits 
variation of the forcing frequency.   Oscillator tests are made at two mount- 
ing positions, one usually forward of the center of buoyancy, and the other 
aft.    For tests with call fin,   the resonant frequency and magnification were 
determined in runs at varied input frequency and amplitude for speeds ranging 
from 2 to 5 knots.    In order to obviate running at resonance in the presence 
of the small damping occurring with the bare hull, the tests without fin were 
performed by means of the phase-lag method.    The latter tests, performed on 
Model ^164 only, were executed at a constant speed of 6 knots under varied 
conditions of input amplitude and frequency. 

EXPERIMENTAL RESULTS 

The analysis of resonance data obtained with the oscillator is de- 
scribed in TK3 Report C-12^.1p     The phase-lag method will be described in a 
subsequent report.    Analysis of the data gives M   ■ .C002 for Model Uio^. 
The data were not sufficiently precise to enable Z'to be determined for the 
"without fins" condition.    Even M   for this condition is preserved with great 
reservation, due to the suspected but yet unevaluated critical influence of 

Tail Arto '0.486 ft. 

Figure 2 - Models Used in Experimental Investigation 

mm.m 
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FINNIC 

Figure 3 - Schematic of Three-Component Balance 

unsteady lift effects upon the forces on an oscillating body. Indeed, It Is 

believed that the value of M obtained In this test, In which the model tra- 

velled about three lengths during one complete oscillation, Is much closer 

to the limiting value for Infinite frequency (Infinite Strouhal number) than 

to the steady (zero frequency) value. The steady value may be greater than 

the value obtained by a factor of 2 or 4.27 This effect should be consider- 

ably less for a body equipped with fins since the chord lengths travelled 
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Figure U - Schematic Diagram of underwater-Body Oscillator 

per cycle is about 30 tines as great for the fins as for the body, and the 

damping of rotary motion is principally due to the fins. 

Rotary derivatives for an elongated body without fins have been 

measured by Oourjienko23 on a curved airship model. His data indicate that 

for such a body 

2 - - (0.08 - ^ ) m [36] 

where the first term is taken from Qourjlenko's measurements in straight flow 

and the second Is added as the contribution of the centrifugal reaction of 
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the fluid for rotary motion..  Kls measurements also give 

M, 0.040 m [37] 

In contrast with the above formulas from curved model tests, tests of a bare 

torpedo hull In the rotatlng-arm tank at the Stevens Institute of Technology84 

gave 

(0.133 k } m [38] 

M, 0.053 m [39] 

Both sets of values for M and Z must be considered uncertain, the former 

because of the fundamental assumption of the equivalence of curved models In 

straight flovr to straight models In curved flow, the latter because of the 

difficulty of measuring the small lateral force on a bare hull In the presence 

of the large Inertlal centrifugal force on the model due to Its rotary motion. 

Consequently, In the following comparison we will assume the mean values 

- (0.10 - k ) m [40] 

M- 0.045 m [41] 

The results obtained from the measurements on Models 4i64 and 4166 

ar'e given In Table 2. It Is Interesting to note that the value of M for 

Model 4164 without fins Is about four times the value obtained from the 

oscillator experiment. This result Is not Inconsistent with the previous 

discussion in which it was anticipated that because of the unsteady motion 

the value of M obtained from tne oscillator might be low by a factor of 

this magnitude. 

TABLE 2 

Experimental Values of Stability Derivatives 

Model 4164 Model 4166 
With Pins Without Fins With Fins Without Fins 

Zw 

■v 
\ 

-.0200 

.0079 

-.0106 

-.0053 

-.0101 

.0132 

-.0011* 

-.0008* 

-.0210 

.0117 

-.0098 

-.0053 

-.0093 

.0178 

-.0014* 

-.0010* 

«Th«M vtluaa eospuUd from [40] «ad Ul] with kx ■ 0.036 for a body of lengtb- 
dluMt«r rmtio * - 7. 



COMPARISON OF BARE HULL FORMULAS WITH EXPERIMENTAL VALUES 

In order to apply Lal^one's formulas, [k],  it  is necessary either 

tc assume an empirical value tor 2    or to compute it from the cross-sectional 

area of the wake at the after end of the body. Both methods will be tried. 

An expression for the area of the displacement wake of a body of 

revolution at zero angle of attack in terms of Us drag, given by Granvllle,27 

is 
CS(H + 1) 

[42] 

where A* is the displacement wake area (determined from the displacement 
thickness of the boundary layer) at the after end of the body, 
nondimensionalized in terms of the body length, 

H is a boundary-layer shape parameter, and 

Ct is the drag coefficient of the body alone, based on the surface 
area of the body. 

Formula [U2] has also been confirmed by application to the AKRON data.' A 

good apprcximatlon for H at the tail, suitable for streamlined bodies of revo- 

lution, riven in References 23 and 29, is H u 1.6. An average value for Cf 
for the Reyncics number range of the model tests (abou- 10 , based on the 

length of 5ht model) is C. ■ 0.003. Hence, using the values of C. and A 

given in Table 1, we obtain: 

Model A* 
Zw 

Laltone (Theor.) Johnson (Exp.) 

4164 

Ui66 

.000608 

.000709 

-.00122 

-.00142 

-.0101 

-.0093 

It is seen that Laltone1 s theoretical formula for Z„ for a bare hull, which w 
has also been given by Allen,30  falls to give even the proper order of magni- 
tude.    A successful theory for the lift on an elongated body of revolution 
must consider the vortex system that has been observed in the wake of these 
bodies; this was not done by either Laltone7 or Allen.30 

When experimental values of Z    are assumed,  values of the other 
derivatives can be computed from Laitone's formulas,   [**],  and from Albring's 
formulas,  15J«    W** results are compared with the experimental values for the 
body without fins In Table 3. 

Comparing the experimental values with the results computed by 
Laitone's and Albring's formulas, we see that either formula gives values for 
\ agreeing fairly well with the experimental value, while for the rotary 
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TABLE 3 

Comparison of Experimental and Computed Values of 
Stability Derivatives for Body without Pins 

Model 4164 Model 4166        | 

Exper. Laitone Albrlng Exper. Laltone Albrlng 

2K 

\ 

-.0101 

.0132 

-.0011 

-.0008 

.0118 

-.0051 

-.0033 

.0133 

a)-.0025 
b) 0 

-.0007 

-.9093 

.0178 

-.0014 

-.0010 

.0175 

-.0040 

-.0025 

.0198 

a)-.0029 
b) 0 

-.0010 

derivatives,  the Laltone formulas give much poorer agreement.    The experimen- 
tal value of Z    is almost exactly the mean of 
Albrlng formulas given in References 3 and 4. 
tal value of Z    is almost exactly the mean of the two values computed by the 

COMPARISON OF FORMULAS FOR BODY WITH FINS WITH EXPERIMENTAL VALUES 

Four sets of formulas, Equations [7],  [8],  [9], and [n], have 
been given for the stability derivatives of a body with fins.    The predictions 
from each of these will now be compared with the experimental results for 
Models 4164 and 4l66. 

In applying Equations [7] and [8] the experimental values given in 
Table 2 will be used for the bare-hull derivatives.    The normal-force deriva- 
tive Z ,. will be computed from the formula, derived from lifting-line theory 
with a small contribution of the drag of the fins neglected. 

2jra,.A+ 

"wt 
't"t 1431 

where at, A r, and xt are given in Table 1. The results obtained from Equa« 

tions [7]. and the results from Equations [8], with ra taken from Table 1, 

are given in Table 4. 

In applying Equations [9] the experimental values of Zw and 2W0 
for the body with and without fins, given in Table 2, will be used and 1^ 

and I.  computed from [6]. In using [6], the value of D need not be known 

with high accuracy since D is small in comparison with Zw or Zw0; D » 0.0010 

may be assumed. The results from Equations [9] are also given in Table 4. 

In Equations [11] the values of the bare-hull derivatives will 

again be taken from Table 2; At, m, at, and xt from Table 1. On the basis 

of a rough analysis of Harrington's results,,3 a value y ■ 1.64 will be 



assumed at a tall surface.    Also taking X ■ 7-0 gives G • 1  - 25.6 L     and 
wo 

K - xt - 2.56 ra. From Figure 1 and Appendix 3 we obtain (   and (  ; then F 
from [12].  fi, t2, F, G, and K ere given in the following table: 

«, ^ 
F G K 

Model 4164 

Model 4166 

O.96 

0.93 

0.682 

0.665 

2.93 

2.44 

0.770 

0.767 

0.519 

0.456 

The results from Equations [11] are given in Table 4. 

TABLE 4 

Comparison of Experimental and Computed Values of 
Stability Derivatives for Body with Fins 

Experi- 
mental 

Ecuaticns 
17] 

Simplest Formulas 
Equations [5] 

Albring New Formulas 
Equations  [11 ] 

Model ^6ü 

Zw -.0200 -.0286 -.0185 -.0200 
(assumed) 

-.0194 

\ .OC79 .0028 " .CCSii .0106 . .0079 

-.0106 -.0115 -.0092 a)-.00$2 
b)-.0027 -.0074 

\ 
-.0053 -.006? -.0046 -.0014 -.0043 

Model 1166 

\ -.0210 -.0331 -.0238 -.0210 
(assumed) 

-.0208 

\ .0117 .0056 .0105 .0132 .0119 

\ 
-.0098 -.0136 -.0119 a)-. OO69 

b)-.0040 -.0081 

\ 
-.0053 -.0073 -.0060 -.0024 -.0044 

It is seen from Table 4 that Albring's formulas give poor agreement 
with experiment for the rotary derivatives.    Equations [7-j are in poor agree-, 
ment for the static derivatives.    Both the "simplest formulas"  [8] and the 
new formulas [11] give good agreement with the experimental values, and elthe: 
set of formulas should serve as approximations to the stability derivatives. 



It should be noted that the values from the new formulas are alge- 
braically greater than (and,  In one case,  equal to) the experimental values 
for both models.    This suggests .that the agreement could have been improved 
by choosing a smaller value for the downwash parameter y and larger values 
for the wake factor ( .    However, considering the possible errors in the ex-' 

2 
perimental values themselves, no attempt will be made now to adjust the pre- 
sently assumed values.   Rather, it is suggested that such an empirical adjust- 
ment await the collection of additional reliable data. 

SUMMARY 

A review of existing theory indicates that a satisfactory theory 
for predicting the dynamic-stability derivatives of a body of revolution 
without fins has not yet been developed.    Instead, the following empirical 
formulas appear to be best available: 

Zwo • -  (0.23 m0-79
+ D) [27] 

M^ « 0.87  (k2 - kj m [29] 

Zqo ' "  (0-10 " V ^ [U0] 

Mqo ' " 0-045 ra IU1] 

When the body is equipped with tail fins adequate to give it dynamic 
stability,  the simplest set of prediction formulas [8], which are essentially 
those that have long been used by airship designers, appears to be in good 
agreement with experiment.   These formulas are: 

(*>    Zw-Zwt 

<b>    *w-» + IZw [8] 

(O    Zq-K 

These formulas are convenient for many applications, such as are illustrated 
in Appendices 1  and 2.    Because of the crudity of the assumptions upon which 
they are based, however,  it is believed that the agreement of the predictions 
from Equations  [8] with experiment is fortuitous.    It is believed that for a 
model equipped with smaller fins,  or with fins of lower aspect ratio than 
was considered here, so that interference effects between body and fins would 
become much more severe, the predictions would not be in good agreement with 
experiment. 
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The predictions fron formulas [11] also appear to be In good agree- 
ment with experiment.    In the.derivation of the;?e formulas It was attempted 
to take into account the interference between the i:ull and the tail.    These 
formulas are: 

(a)   Z    « Z      - FA.G 1   '     w        wo t 

where 

and 

(b)    \ « M^ - xtFAtG 

M    Zq • 2qo - FAtK 

(d)    Mq " Mqo * xtFAtK 

2»rf C 

[11] 

[12] 
1  + 2/at 

i-^rx2^ [13] 

K' xt " ^11* a ^^ 

Zwo * -  ^o + 0) W 

* 
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APPENDIX 1 

.'".".•■  • ■■    

ANALYSIS OF ERRORS IN ROOTS OP STABILITY EQUATION 

In the present section the simplest approximation formulas [8] will 

be applied to obtain simple expressions and graphs for the errors in the roots 

of the stability equation, [1], due to errors in the values of the stability 

derivatives. Since, as was seen in Table 4, the formulas (8] give results 

in very good agreement with experiment for bodies of revolution with tall 

surfaces, it should be possible to determine at least the order of magnitude 

of these errors by the use of these formulas. 

Inserting the values given in Equations [2], and the approximations 

k*» k - 1, Equation [1] may )e written 
2 

Umaca<r2 - 2ra(c2Zw + Mq)(r+ ZwMq - ^(ra + Zq) - 0     [W] 

where c ■ yi/m is the radius of gyration about a transverse axis. The follow- 

ing expressions for error rates can now be obtained by differentiating [W]: 

(a) ^-- {2mca<r- MJ/d 

where 

(b) da (m + 
«,'/*, " 

(0 do 

'V «w^ 

(d) it iv (2m <T - V/', 

V | 2m(4mc2<r - C%,-Mq) 

1*5] 

If now the approximate relations [8] are assumed and we put 

Zw/m, we obtain 

1^ • m(-fl+ 2)/2 

Zn - - mM/2 14?] 

M   - - mfi/U 

and also Equation [U4] becomes 

8c8<r2 + ^(1 + 4c2 )<T + 2(^ - 1 ) » 0 
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whence 

•    ..jw.,.    2(1   -^,') 8 
m     • (1 + Uc2)<r+ 2 

Equations [^7] and [48] enable the derivatives of a, given by (45], 
to be written explicitly as functions of o.   We obtain 

"w 
^    Zw "fe " " (1   " '♦c^Hl  + 4ca«r)2/d2 

^9] 
(b)    ^ if • H + (1  + 4c2)<r+ 4ca(T2]2/4 

wnere 

(d)    Mq   -If-- - (1  - 4c2<r2)(l +a)a/d2 

[2 +  (1 + Uc2)(r][1 + 4c2 + l6c2<r r 4c2(l + ^c2^2]        (50j 

The error rates in £qus:lor.s [U9] are graphed against 9 in Figure 5 
for :he case s2 • 0.05, since this Is approximately the value for most cases 
:f practical Interest.    It is seen that the stability index a is aes* sensi- 
tive :G percentage changes in 2W for a very stable body, In IL for a very 
unstable body.    For a body of neutral stability,   (<T« 0),^ Is equally sensi- 
tive to percentage changes in all the stability derivatives, l. e., 

The latter value may also be assumed to give the order of magnitude of the 
error rates for nearly neutrally stable bodies.    Thus,  for such a body, a 
percentage error of '0 percent In one of the stability derivatives would 
result in an errors» 0.10x0.4'7 ■ 0.(W2. 

For a body of neutral static stability,  i.e., when fL • 0,  It is 
seen from i^uaticn [^5b] that Äa/dNL ■ C,   so that a Is insensitive to small 
cr.anges in Mw. 

As an application of Figure 5. let us find the change In o due to 
s change In the effective area of tail surface At, assuming that the effec- 
:lvft aspect ratio a. is held constant.   We have 

IC     SSL      *        fc       "4   if      a      2£      0 foi 
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Figure 5 - Rates of Change In Stability. Index Due to Percentage 
Changes In Stability Derivatives and Area 

But from [8] and [43],  in accordance with present approximations, 

örA* 
Z   - Z t w       wt 1 + 2/at 

and 

1    dZw     1   fa     1    ^g.     1 
^< ^< V< "^ 

[53] 



Then [p2j gives 

where, from iUS] 

z-rs fri    1 + (1 +4c8)<7+Uc2oa 
l55J 

Since all :he terms In parentheses In [51*] are given In terms of c either by 
Equations [Hf] or by Figure 5, then \4^- Is also a function of c.    Its 
graph Is Included in Figure 5.   The rate tof variation of e with a percentage 
change In tail-surface area is seen to be about four times the average of the 
rates of variation of tne ether quanticies graphed in Figure $.   For nearly 
neutrally sra'cle bed ies we have 

A. y^-"  "   I .0/ [5oJ 
t 

four tines the value In Equation [;*].   Thus a 16 percent increase in area 
of tail surface would reduce c oy approximately 0.17. 

As another illustration, let us estimate ehe effect on a due to the 
differences in Table H between the experimental values of the stability deri- 
vatives and the values computed from tne new formulas. Equations [n],  for 
Model ^166.    The val-e of c computed from Equations [1] and 12]  (assuming 
k' ■ k   »l) using the experimental data for Model Ui6ö is a * 0.122.    Hence, 
from Figure 5, 

^- - 0.375 

^- 
- 0M2 

Also, from Table 4, i 

4Zw 0.010 

ÄL.. 
h 0.173 

***. 
QM2 

\Trq ' -0-^ 

4Mw -if • 0.017 
w 

6H„ 
—nr"   -   0.170 



ty 

Hence, 

- .0038 + .0080 + .0712 + .0764 » 0.159 

■q    Zq        "»"q    "q 

If we had used the less exact relations 151j. assuming the body to be of 
approximately neutral stability, we would have obtained 

Ao' 0.417 (0.010 + 0.017 + 0.173 + 0.170) - O.15U 

The resulting estimated value of c is then a - 0.122 + O.159 - 0.281 
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APPENDIX 2 

SIZE OF STABILIZERS FOR A PRESCRIBED a 

As a second application the formulas for the stability derivatives 
will be applied to a practical design problem, to estimate the size of the 
stabilizing surfaces needed In order to attain a prescribed value of the 
stability Index a. 

The tall surface area will first be computed on the basis of the 
simplest approximation formulas [8]. In keeping with the spirit of this 
approximation, the lift force on the call will be assumed to be given by [19], 
uncorrected for the boundary-layer and downwash effects of the hull. Then, 
from [8] and [UJ] 

2»rAt 
zw-zwt — ^7] 

Kence, from l^j, 
Zn-A.    la(1 - ^ca<ya ) 

1  - 158] 
1 + 2/ar  (1 + »tc2 ) a + 2 

When a Is prescribed, the right member o"f Equaclcu [58] Is given. 
Denoting 1c by C , putting 

At--ir iwi 't 

and substituting for z^ and bt from [21] and [22] Into [$S], we obr.al.^ 

8ir(ba - Ra) - C^a + 2) [60] 

This last equation can be used to determine the aspect ratio a when the semi- 
span b Is given, or vice-versa. 

We can also obtain an expression for A,, by substituting the new 
formulas \\\\ for the stability derivatives Inco the stability equadon [UUJ. 
The result Is 

FA ^cV - 2nuT(c2ZWC) ^ Mqo) ^ ZwoMqo - ^(m + Zq0)      ^ 
1 " ' 2m<r(caG + xtK)  - CMqo - xtKZw0 + xt0(m +>Zq0) ♦ O^ 

When the bare-hull stability derivatives and the desired a are prescribed, 
the right member of Equation [6l] is given.   Denoting it by C . and substi- 
tuting for P from i'12],  Equation 161] becomes 

2   x 162] 2»rf {   A. - C fl +4-] ^a    t       a I        at / 
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Hence,  substituting for at> bt, and At from [21],  [22] and [59] Into [6l], 
we obtain 

8wf2(ba -R2) -^i-t-i- [63] 

But i    Is given as a function of a by Equation [20] or by Figure 1, and ( 
i a 

is given as a function of b In Appendix 3 (Equation [73]).    Hence, Equation 
[63] can be used to determine a when b Is given, or vice-versa. 

As an example,  consider Model U16U with o ■ -0.25 prescribed. 
This value of o corresponds to the experimental values In Table 2, when It Is 
computed from Equation [UM] with c2 ■ 0.05.    In order to determine C   and C 
we need tne values of ra,  xt, Zw0, M^, Z    , M   , G,  and K.    These are given 
In Tables 1 and 2, and In the tabulation preceding Table U.    Substituting 
these values for Model M16M in Equations [58] and [6l], we obtain 

C    - 0.0205. C   - 0.01U8 
1 2 

Now suppose that the stabilizers are situated at the very end of 
IR - 0) 

obtain from [60] 
the body (R ■ 0) and that an aspect ratio l^ ■ 1.93 Is prescribed.    We then 

/ 

C  (a + 2) 

To apply [63]. we first read C ■ O.96 from Figure 1. Also, from [73], we 

have 
.  . o.9o (, - MU* ) 

Hence,  [63] becomes 

b2 - 0.01726 b - 0.00473 - 0 

whose solution Is b ■ 0.0779.    The corresponding tall areas, computed from 
[59], are as fellows: 

Actual tall area 0.00414 
Computed from "simple" formulas 0.00459 
Computed from new formulas 0.00492 

As another example,  consider Model 4l66 with c » 0.122, correspond- 
ing to the experimental values In Table 2.    Substituting the values from 
Tables 1 and 2, and G and K from the tabulation preceding Table 4 into 
Equations [58] and [61], we obtain 

C   - 0.0208,        C   - 0.0168 
1 2 

Now suppose. In contrast to the previous example, that b « l/l4 is prescribed. 
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and that R ■ 0, as before.   We then obtain, from [6o], 

• . - „Jisbi . 2 ■ U 17 
I .. 

To apply [63] we first obtain t - O.665 from [73]. Equation (63] may now' 
be solved by successive approximations. Assume C "0.95; then, from Equa- 
tion [63] we obtain,  as a first approximation to a 

8irf f b2 

a J-8 2 - 2.82 
s 

The corrected value for C   corresponding to this value of a Is  f   - O.91. 
The second approximation to a Is then a > 2.62,  to which corresponds £  ■ 0.90, 
We obtain, finally, a ■ 2.57.    The corresponding tall areas,  computed from 
[59]. are as follows: 

Actual tall area C.00602 
Computed from "simple" formulas 0.00ü90 
Computed from new formulas 0.0079^ 

Because of the possibility cf errors in the experimental values, 
an absolute evaluation of the validity of these area formulas cannot be 
based on the foregoing comparisons. 



33 

APPENDIX 3 

DETERMINATION OF WAKE FACTOR   f 
2 

It will be convenient to employ dimensional nomerolature in the 

present section. Let U be the free-stream velocity, and at first assume 

that this is also the velocity Just outside the boundary layer in the neigh- 

borhood of the tail surface. Let u be the longitudinal component of the 

velocity at a distance y from tae body. Then, assuming rectangular loading 

on the tail fin, the wake correction factor ( is a 

«.-ii:*dy w 

where br is the distance of the tip of the tail fin from the body. 

It will be supposed that b0 is greater than the thickness of the 

boundary layer at the tail, so that we may write 

and 

,*.J^(l -^) dy 165] 

,.j>-u(1 .u)dy ^ l66] 

where A* is the displacement thickness and 9  the momentum thickness of the 
boundary layer at the tail. Then 

• * + e - b0 -J|'(f)
8 dy 

whence, from 15^], 

t - i .1^ 167] 

In terras of the boundary layer shape parameter H ■ 6*/$, Equation [67] 
becomes 

>   . 1 . A (H+ i) [68] 
2 D/s 

According to Granvllle and Lyon,21'2*  an approximate value for 9/b0 at the 
tall is given by 

bo 2.8H2{H +%),      bo        S t 

where d is the diameter of the body.    Hence 

0.6 d 
ro 

r   • 1   • ¥ f   V(HZ  - 1)(H+ 3)XCsCt 170] 



3^ 

Squatlen [70] has been derived on the assumption that the velocity 
Just outside the bcundary layer is equal to the free-stream velocity.    Pressure 
clstributicn data en bodies of revolution, however,  indicate chat the velocity 
Just outside the boundary layer at the tall is about 0.9U.   When the fin ex- 
tends well beyond the boundary layer,  the mean potential-flow velocity over 
the fin will be somewhat larger than 0.9U.    An average value of 0.95U will 
be assumed here,  sc that the wake factor  t   becomes 

2 

^ ■0-90 (• '^irr /in2 - I){K+ 3ucsct)       (7i] 0.6 d 

"0 

If also the average value H ■ 1.6 is assumed, (71] becomes 

C2- 0.90(1 .-f-/xc77-) [72] 

This can also te expressed In our customary dlmensicnless notation, as 

?or Models '4'6^  and Ul66, ^ ■ 7, ö/'o^ » 2, and the values of C, 

are giver, ir. Table 1. Assuming C ■ 0.0OJ, we obtain the following values 

Model ^164, C   ■ 0.632 
2 

Model Ui66, C   - O.665 
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